Step |
Hyp |
Ref |
Expression |
1 |
|
ismot.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismot.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
motgrp.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
f1oi |
⊢ ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 ) |
6 |
|
fvresi |
⊢ ( 𝑎 ∈ 𝑃 → ( ( I ↾ 𝑃 ) ‘ 𝑎 ) = 𝑎 ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( I ↾ 𝑃 ) ‘ 𝑎 ) = 𝑎 ) |
8 |
|
fvresi |
⊢ ( 𝑏 ∈ 𝑃 → ( ( I ↾ 𝑃 ) ‘ 𝑏 ) = 𝑏 ) |
9 |
8
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( I ↾ 𝑃 ) ‘ 𝑏 ) = 𝑏 ) |
10 |
7 9
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) − ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
11 |
10
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) − ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
12 |
1 2
|
ismot |
⊢ ( 𝐺 ∈ 𝑉 → ( ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) − ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( ( I ↾ 𝑃 ) : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) − ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) → ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) ) |
14 |
3 5 11 13
|
syl12anc |
⊢ ( 𝜑 → ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) ) |