Metamath Proof Explorer


Theorem idmot

Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p 𝑃 = ( Base ‘ 𝐺 )
ismot.m = ( dist ‘ 𝐺 )
motgrp.1 ( 𝜑𝐺𝑉 )
Assertion idmot ( 𝜑 → ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) )

Proof

Step Hyp Ref Expression
1 ismot.p 𝑃 = ( Base ‘ 𝐺 )
2 ismot.m = ( dist ‘ 𝐺 )
3 motgrp.1 ( 𝜑𝐺𝑉 )
4 f1oi ( I ↾ 𝑃 ) : 𝑃1-1-onto𝑃
5 4 a1i ( 𝜑 → ( I ↾ 𝑃 ) : 𝑃1-1-onto𝑃 )
6 fvresi ( 𝑎𝑃 → ( ( I ↾ 𝑃 ) ‘ 𝑎 ) = 𝑎 )
7 6 ad2antrl ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( I ↾ 𝑃 ) ‘ 𝑎 ) = 𝑎 )
8 fvresi ( 𝑏𝑃 → ( ( I ↾ 𝑃 ) ‘ 𝑏 ) = 𝑏 )
9 8 ad2antll ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( I ↾ 𝑃 ) ‘ 𝑏 ) = 𝑏 )
10 7 9 oveq12d ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 𝑏 ) )
11 10 ralrimivva ( 𝜑 → ∀ 𝑎𝑃𝑏𝑃 ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 𝑏 ) )
12 1 2 ismot ( 𝐺𝑉 → ( ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( ( I ↾ 𝑃 ) : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
13 12 biimpar ( ( 𝐺𝑉 ∧ ( ( I ↾ 𝑃 ) : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( ( I ↾ 𝑃 ) ‘ 𝑎 ) ( ( I ↾ 𝑃 ) ‘ 𝑏 ) ) = ( 𝑎 𝑏 ) ) ) → ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) )
14 3 5 11 13 syl12anc ( 𝜑 → ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) )