Metamath Proof Explorer


Theorem idnghm

Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis idnghm.2 𝑉 = ( Base ‘ 𝑆 )
Assertion idnghm ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) )

Proof

Step Hyp Ref Expression
1 idnghm.2 𝑉 = ( Base ‘ 𝑆 )
2 eqid ( 𝑆 normOp 𝑆 ) = ( 𝑆 normOp 𝑆 )
3 eqid ( 0g𝑆 ) = ( 0g𝑆 )
4 2 1 3 nmoid ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g𝑆 ) } ⊊ 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = 1 )
5 1re 1 ∈ ℝ
6 4 5 eqeltrdi ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g𝑆 ) } ⊊ 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ )
7 eleq2 ( { ( 0g𝑆 ) } = 𝑉 → ( 𝑥 ∈ { ( 0g𝑆 ) } ↔ 𝑥𝑉 ) )
8 7 biimpar ( ( { ( 0g𝑆 ) } = 𝑉𝑥𝑉 ) → 𝑥 ∈ { ( 0g𝑆 ) } )
9 elsni ( 𝑥 ∈ { ( 0g𝑆 ) } → 𝑥 = ( 0g𝑆 ) )
10 8 9 syl ( ( { ( 0g𝑆 ) } = 𝑉𝑥𝑉 ) → 𝑥 = ( 0g𝑆 ) )
11 10 mpteq2dva ( { ( 0g𝑆 ) } = 𝑉 → ( 𝑥𝑉𝑥 ) = ( 𝑥𝑉 ↦ ( 0g𝑆 ) ) )
12 mptresid ( I ↾ 𝑉 ) = ( 𝑥𝑉𝑥 )
13 fconstmpt ( 𝑉 × { ( 0g𝑆 ) } ) = ( 𝑥𝑉 ↦ ( 0g𝑆 ) )
14 11 12 13 3eqtr4g ( { ( 0g𝑆 ) } = 𝑉 → ( I ↾ 𝑉 ) = ( 𝑉 × { ( 0g𝑆 ) } ) )
15 14 fveq2d ( { ( 0g𝑆 ) } = 𝑉 → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g𝑆 ) } ) ) )
16 2 1 3 nmo0 ( ( 𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g𝑆 ) } ) ) = 0 )
17 16 anidms ( 𝑆 ∈ NrmGrp → ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g𝑆 ) } ) ) = 0 )
18 15 17 sylan9eqr ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g𝑆 ) } = 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = 0 )
19 0re 0 ∈ ℝ
20 18 19 eqeltrdi ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g𝑆 ) } = 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ )
21 ngpgrp ( 𝑆 ∈ NrmGrp → 𝑆 ∈ Grp )
22 1 3 grpidcl ( 𝑆 ∈ Grp → ( 0g𝑆 ) ∈ 𝑉 )
23 21 22 syl ( 𝑆 ∈ NrmGrp → ( 0g𝑆 ) ∈ 𝑉 )
24 23 snssd ( 𝑆 ∈ NrmGrp → { ( 0g𝑆 ) } ⊆ 𝑉 )
25 sspss ( { ( 0g𝑆 ) } ⊆ 𝑉 ↔ ( { ( 0g𝑆 ) } ⊊ 𝑉 ∨ { ( 0g𝑆 ) } = 𝑉 ) )
26 24 25 sylib ( 𝑆 ∈ NrmGrp → ( { ( 0g𝑆 ) } ⊊ 𝑉 ∨ { ( 0g𝑆 ) } = 𝑉 ) )
27 6 20 26 mpjaodan ( 𝑆 ∈ NrmGrp → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ )
28 id ( 𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp )
29 1 idghm ( 𝑆 ∈ Grp → ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) )
30 21 29 syl ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) )
31 2 isnghm2 ( ( 𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) ) → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ↔ ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) )
32 28 30 31 mpd3an23 ( 𝑆 ∈ NrmGrp → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ↔ ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) )
33 27 32 mpbird ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) )