Step |
Hyp |
Ref |
Expression |
1 |
|
idnghm.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( 𝑆 normOp 𝑆 ) = ( 𝑆 normOp 𝑆 ) |
3 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
4 |
2 1 3
|
nmoid |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = 1 ) |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
4 5
|
eqeltrdi |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) |
7 |
|
eleq2 |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( 𝑥 ∈ { ( 0g ‘ 𝑆 ) } ↔ 𝑥 ∈ 𝑉 ) ) |
8 |
7
|
biimpar |
⊢ ( ( { ( 0g ‘ 𝑆 ) } = 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ { ( 0g ‘ 𝑆 ) } ) |
9 |
|
elsni |
⊢ ( 𝑥 ∈ { ( 0g ‘ 𝑆 ) } → 𝑥 = ( 0g ‘ 𝑆 ) ) |
10 |
8 9
|
syl |
⊢ ( ( { ( 0g ‘ 𝑆 ) } = 𝑉 ∧ 𝑥 ∈ 𝑉 ) → 𝑥 = ( 0g ‘ 𝑆 ) ) |
11 |
10
|
mpteq2dva |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( 𝑥 ∈ 𝑉 ↦ 𝑥 ) = ( 𝑥 ∈ 𝑉 ↦ ( 0g ‘ 𝑆 ) ) ) |
12 |
|
mptresid |
⊢ ( I ↾ 𝑉 ) = ( 𝑥 ∈ 𝑉 ↦ 𝑥 ) |
13 |
|
fconstmpt |
⊢ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) = ( 𝑥 ∈ 𝑉 ↦ ( 0g ‘ 𝑆 ) ) |
14 |
11 12 13
|
3eqtr4g |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( I ↾ 𝑉 ) = ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) |
15 |
14
|
fveq2d |
⊢ ( { ( 0g ‘ 𝑆 ) } = 𝑉 → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) ) |
16 |
2 1 3
|
nmo0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) = 0 ) |
17 |
16
|
anidms |
⊢ ( 𝑆 ∈ NrmGrp → ( ( 𝑆 normOp 𝑆 ) ‘ ( 𝑉 × { ( 0g ‘ 𝑆 ) } ) ) = 0 ) |
18 |
15 17
|
sylan9eqr |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } = 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) = 0 ) |
19 |
|
0re |
⊢ 0 ∈ ℝ |
20 |
18 19
|
eqeltrdi |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ { ( 0g ‘ 𝑆 ) } = 𝑉 ) → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) |
21 |
|
ngpgrp |
⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ Grp ) |
22 |
1 3
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
23 |
21 22
|
syl |
⊢ ( 𝑆 ∈ NrmGrp → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
24 |
23
|
snssd |
⊢ ( 𝑆 ∈ NrmGrp → { ( 0g ‘ 𝑆 ) } ⊆ 𝑉 ) |
25 |
|
sspss |
⊢ ( { ( 0g ‘ 𝑆 ) } ⊆ 𝑉 ↔ ( { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ∨ { ( 0g ‘ 𝑆 ) } = 𝑉 ) ) |
26 |
24 25
|
sylib |
⊢ ( 𝑆 ∈ NrmGrp → ( { ( 0g ‘ 𝑆 ) } ⊊ 𝑉 ∨ { ( 0g ‘ 𝑆 ) } = 𝑉 ) ) |
27 |
6 20 26
|
mpjaodan |
⊢ ( 𝑆 ∈ NrmGrp → ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) |
28 |
|
id |
⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ NrmGrp ) |
29 |
1
|
idghm |
⊢ ( 𝑆 ∈ Grp → ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) ) |
30 |
21 29
|
syl |
⊢ ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) ) |
31 |
2
|
isnghm2 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑆 ∈ NrmGrp ∧ ( I ↾ 𝑉 ) ∈ ( 𝑆 GrpHom 𝑆 ) ) → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ↔ ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) ) |
32 |
28 30 31
|
mpd3an23 |
⊢ ( 𝑆 ∈ NrmGrp → ( ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ↔ ( ( 𝑆 normOp 𝑆 ) ‘ ( I ↾ 𝑉 ) ) ∈ ℝ ) ) |
33 |
27 32
|
mpbird |
⊢ ( 𝑆 ∈ NrmGrp → ( I ↾ 𝑉 ) ∈ ( 𝑆 NGHom 𝑆 ) ) |