Description: An integral domain is a domain. (Contributed by Thierry Arnoux, 22-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | idomringd.1 | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) | |
Assertion | idomdomd | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) | |
2 | df-idom | ⊢ IDomn = ( CRing ∩ Domn ) | |
3 | 1 2 | eleqtrdi | ⊢ ( 𝜑 → 𝑅 ∈ ( CRing ∩ Domn ) ) |
4 | 3 | elin2d | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) |