Step |
Hyp |
Ref |
Expression |
1 |
|
domncan.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
domncan.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
domncan.m |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
domncan.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
5 |
|
domncan.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
domncan.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
domnrcan.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
8 |
|
domnrcan.2 |
⊢ ( 𝜑 → ( 𝑌 · 𝑋 ) = ( 𝑍 · 𝑋 ) ) |
9 |
7
|
idomdomd |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
10 |
|
df-idom |
⊢ IDomn = ( CRing ∩ Domn ) |
11 |
7 10
|
eleqtrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( CRing ∩ Domn ) ) |
12 |
11
|
elin1d |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
13 |
4
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
14 |
1 3
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
15 |
12 13 5 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
16 |
1 3
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) = ( 𝑍 · 𝑋 ) ) |
17 |
12 13 6 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑍 · 𝑋 ) ) |
18 |
8 15 17
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) |
19 |
1 2 3 4 5 6 9 18
|
domnlcan |
⊢ ( 𝜑 → 𝑌 = 𝑍 ) |