Metamath Proof Explorer


Theorem idomrcan

Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses domncan.b 𝐵 = ( Base ‘ 𝑅 )
domncan.1 0 = ( 0g𝑅 )
domncan.m · = ( .r𝑅 )
domncan.x ( 𝜑𝑋 ∈ ( 𝐵 ∖ { 0 } ) )
domncan.y ( 𝜑𝑌𝐵 )
domncan.z ( 𝜑𝑍𝐵 )
domnrcan.r ( 𝜑𝑅 ∈ IDomn )
domnrcan.2 ( 𝜑 → ( 𝑌 · 𝑋 ) = ( 𝑍 · 𝑋 ) )
Assertion idomrcan ( 𝜑𝑌 = 𝑍 )

Proof

Step Hyp Ref Expression
1 domncan.b 𝐵 = ( Base ‘ 𝑅 )
2 domncan.1 0 = ( 0g𝑅 )
3 domncan.m · = ( .r𝑅 )
4 domncan.x ( 𝜑𝑋 ∈ ( 𝐵 ∖ { 0 } ) )
5 domncan.y ( 𝜑𝑌𝐵 )
6 domncan.z ( 𝜑𝑍𝐵 )
7 domnrcan.r ( 𝜑𝑅 ∈ IDomn )
8 domnrcan.2 ( 𝜑 → ( 𝑌 · 𝑋 ) = ( 𝑍 · 𝑋 ) )
9 7 idomdomd ( 𝜑𝑅 ∈ Domn )
10 df-idom IDomn = ( CRing ∩ Domn )
11 7 10 eleqtrdi ( 𝜑𝑅 ∈ ( CRing ∩ Domn ) )
12 11 elin1d ( 𝜑𝑅 ∈ CRing )
13 4 eldifad ( 𝜑𝑋𝐵 )
14 1 3 crngcom ( ( 𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )
15 12 13 5 14 syl3anc ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) )
16 1 3 crngcom ( ( 𝑅 ∈ CRing ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 · 𝑍 ) = ( 𝑍 · 𝑋 ) )
17 12 13 6 16 syl3anc ( 𝜑 → ( 𝑋 · 𝑍 ) = ( 𝑍 · 𝑋 ) )
18 8 15 17 3eqtr4d ( 𝜑 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) )
19 1 2 3 4 5 6 9 18 domnlcan ( 𝜑𝑌 = 𝑍 )