Metamath Proof Explorer


Theorem idomringd

Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypothesis idomringd.1 ( 𝜑𝑅 ∈ IDomn )
Assertion idomringd ( 𝜑𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 idomringd.1 ( 𝜑𝑅 ∈ IDomn )
2 1 idomcringd ( 𝜑𝑅 ∈ CRing )
3 2 crngringd ( 𝜑𝑅 ∈ Ring )