| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pm2mpval.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pm2mpval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
pm2mpval.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 5 |
|
pm2mpval.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 6 |
|
pm2mpval.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 7 |
|
pm2mpval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 8 |
|
pm2mpval.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 9 |
|
pm2mpval.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 10 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝐶 ) = ( 1r ‘ 𝐶 ) |
| 12 |
3 11
|
ringidcl |
⊢ ( 𝐶 ∈ Ring → ( 1r ‘ 𝐶 ) ∈ 𝐵 ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) ∈ 𝐵 ) |
| 14 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 1r ‘ 𝐶 ) ∈ 𝐵 ) → ( 𝑇 ‘ ( 1r ‘ 𝐶 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 1r ‘ 𝐶 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 15 |
13 14
|
mpd3an3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ‘ ( 1r ‘ 𝐶 ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 1r ‘ 𝐶 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 17 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
| 18 |
1 2 11 7 16 17
|
decpmatid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( ( 1r ‘ 𝐶 ) decompPMat 𝑘 ) = if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ) |
| 19 |
18
|
3expa |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1r ‘ 𝐶 ) decompPMat 𝑘 ) = if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ) |
| 20 |
19
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1r ‘ 𝐶 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 21 |
20
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 1r ‘ 𝐶 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( 1r ‘ 𝐶 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 23 |
|
ovif |
⊢ ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 0 , ( ( 1r ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) , ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 24 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 25 |
8
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 28 |
27
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( 1r ‘ 𝐴 ) = ( 1r ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 29 |
28
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1r ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 30 |
8
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
| 31 |
24 30
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
| 32 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
| 33 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 34 |
8 6 32 5 33
|
ply1moncl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
| 35 |
24 34
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
| 36 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
| 37 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑄 ) ) = ( 1r ‘ ( Scalar ‘ 𝑄 ) ) |
| 38 |
33 36 4 37
|
lmodvs1 |
⊢ ( ( 𝑄 ∈ LMod ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑘 ↑ 𝑋 ) ) |
| 39 |
31 35 38
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1r ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑘 ↑ 𝑋 ) ) |
| 40 |
29 39
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1r ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑘 ↑ 𝑋 ) ) |
| 41 |
27
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( 0g ‘ 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 42 |
41
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 43 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 45 |
33 36 4 43 44
|
lmod0vs |
⊢ ( ( 𝑄 ∈ LMod ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
| 46 |
31 35 45
|
syl2an2r |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
| 47 |
42 46
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
| 48 |
40 47
|
ifeq12d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , ( ( 1r ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) , ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = if ( 𝑘 = 0 , ( 𝑘 ↑ 𝑋 ) , ( 0g ‘ 𝑄 ) ) ) |
| 49 |
23 48
|
eqtrid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 0 , ( 𝑘 ↑ 𝑋 ) , ( 0g ‘ 𝑄 ) ) ) |
| 50 |
49
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( 𝑘 ↑ 𝑋 ) , ( 0g ‘ 𝑄 ) ) ) ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( 𝑘 ↑ 𝑋 ) , ( 0g ‘ 𝑄 ) ) ) ) ) |
| 52 |
8
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
| 53 |
|
ringmnd |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Mnd ) |
| 54 |
24 52 53
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Mnd ) |
| 55 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 56 |
55
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ℕ0 ∈ V ) |
| 57 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 58 |
57
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 0 ∈ ℕ0 ) |
| 59 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( 𝑘 ↑ 𝑋 ) , ( 0g ‘ 𝑄 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( 𝑘 ↑ 𝑋 ) , ( 0g ‘ 𝑄 ) ) ) |
| 60 |
35
|
ralrimiva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑘 ∈ ℕ0 ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
| 61 |
44 54 56 58 59 60
|
gsummpt1n0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( 𝑘 ↑ 𝑋 ) , ( 0g ‘ 𝑄 ) ) ) ) = ⦋ 0 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) |
| 62 |
|
c0ex |
⊢ 0 ∈ V |
| 63 |
|
csbov1g |
⊢ ( 0 ∈ V → ⦋ 0 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( ⦋ 0 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) ) |
| 64 |
62 63
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ⦋ 0 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( ⦋ 0 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) ) |
| 65 |
|
csbvarg |
⊢ ( 0 ∈ V → ⦋ 0 / 𝑘 ⦌ 𝑘 = 0 ) |
| 66 |
62 65
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ⦋ 0 / 𝑘 ⦌ 𝑘 = 0 ) |
| 67 |
66
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ⦋ 0 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) = ( 0 ↑ 𝑋 ) ) |
| 68 |
8 6 32 5
|
ply1idvr1 |
⊢ ( 𝐴 ∈ Ring → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑄 ) ) |
| 69 |
24 68
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0 ↑ 𝑋 ) = ( 1r ‘ 𝑄 ) ) |
| 70 |
64 67 69
|
3eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ⦋ 0 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( 1r ‘ 𝑄 ) ) |
| 71 |
51 61 70
|
3eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( 1r ‘ 𝐴 ) , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 1r ‘ 𝑄 ) ) |
| 72 |
15 22 71
|
3eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑇 ‘ ( 1r ‘ 𝐶 ) ) = ( 1r ‘ 𝑄 ) ) |