| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idressubmefmnd.g | ⊢ 𝐺  =  ( EndoFMnd ‘ 𝐴 ) | 
						
							| 2 |  | idresefmnd.e | ⊢ 𝐸  =  ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } ) | 
						
							| 3 | 1 | idressubmefmnd | ⊢ ( 𝐴  ∈  𝑉  →  { (  I   ↾  𝐴 ) }  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 4 | 1 | efmndmnd | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Mnd ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  =  ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } ) | 
						
							| 8 | 5 6 7 | issubm2 | ⊢ ( 𝐺  ∈  Mnd  →  ( { (  I   ↾  𝐴 ) }  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( { (  I   ↾  𝐴 ) }  ⊆  ( Base ‘ 𝐺 )  ∧  ( 0g ‘ 𝐺 )  ∈  { (  I   ↾  𝐴 ) }  ∧  ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  ∈  Mnd ) ) ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( { (  I   ↾  𝐴 ) }  ∈  ( SubMnd ‘ 𝐺 )  ↔  ( { (  I   ↾  𝐴 ) }  ⊆  ( Base ‘ 𝐺 )  ∧  ( 0g ‘ 𝐺 )  ∈  { (  I   ↾  𝐴 ) }  ∧  ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  ∈  Mnd ) ) ) | 
						
							| 10 |  | snex | ⊢ { (  I   ↾  𝐴 ) }  ∈  V | 
						
							| 11 | 2 5 | ressbas | ⊢ ( { (  I   ↾  𝐴 ) }  ∈  V  →  ( { (  I   ↾  𝐴 ) }  ∩  ( Base ‘ 𝐺 ) )  =  ( Base ‘ 𝐸 ) ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( 𝐴  ∈  𝑉  →  ( { (  I   ↾  𝐴 ) }  ∩  ( Base ‘ 𝐺 ) )  =  ( Base ‘ 𝐸 ) ) | 
						
							| 13 |  | inss2 | ⊢ ( { (  I   ↾  𝐴 ) }  ∩  ( Base ‘ 𝐺 ) )  ⊆  ( Base ‘ 𝐺 ) | 
						
							| 14 | 12 13 | eqsstrrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( Base ‘ 𝐸 )  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 15 | 2 | eqcomi | ⊢ ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  =  𝐸 | 
						
							| 16 | 15 | eleq1i | ⊢ ( ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  ∈  Mnd  ↔  𝐸  ∈  Mnd ) | 
						
							| 17 | 16 | biimpi | ⊢ ( ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  ∈  Mnd  →  𝐸  ∈  Mnd ) | 
						
							| 18 | 17 | 3ad2ant3 | ⊢ ( ( { (  I   ↾  𝐴 ) }  ⊆  ( Base ‘ 𝐺 )  ∧  ( 0g ‘ 𝐺 )  ∈  { (  I   ↾  𝐴 ) }  ∧  ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  ∈  Mnd )  →  𝐸  ∈  Mnd ) | 
						
							| 19 | 14 18 | anim12ci | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( { (  I   ↾  𝐴 ) }  ⊆  ( Base ‘ 𝐺 )  ∧  ( 0g ‘ 𝐺 )  ∈  { (  I   ↾  𝐴 ) }  ∧  ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  ∈  Mnd ) )  →  ( 𝐸  ∈  Mnd  ∧  ( Base ‘ 𝐸 )  ⊆  ( Base ‘ 𝐺 ) ) ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ( { (  I   ↾  𝐴 ) }  ⊆  ( Base ‘ 𝐺 )  ∧  ( 0g ‘ 𝐺 )  ∈  { (  I   ↾  𝐴 ) }  ∧  ( 𝐺  ↾s  { (  I   ↾  𝐴 ) } )  ∈  Mnd )  →  ( 𝐸  ∈  Mnd  ∧  ( Base ‘ 𝐸 )  ⊆  ( Base ‘ 𝐺 ) ) ) ) | 
						
							| 21 | 9 20 | sylbid | ⊢ ( 𝐴  ∈  𝑉  →  ( { (  I   ↾  𝐴 ) }  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝐸  ∈  Mnd  ∧  ( Base ‘ 𝐸 )  ⊆  ( Base ‘ 𝐺 ) ) ) ) | 
						
							| 22 | 3 21 | mpd | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐸  ∈  Mnd  ∧  ( Base ‘ 𝐸 )  ⊆  ( Base ‘ 𝐺 ) ) ) |