Step |
Hyp |
Ref |
Expression |
1 |
|
idressubgsymg.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
idrespermg.e |
⊢ 𝐸 = ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) |
3 |
1
|
idressubgsymg |
⊢ ( 𝐴 ∈ 𝑉 → { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
5 |
1 4
|
pgrpsubgsymgbi |
⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) ↔ ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) ) ) |
6 |
|
snex |
⊢ { ( I ↾ 𝐴 ) } ∈ V |
7 |
2 4
|
ressbas |
⊢ ( { ( I ↾ 𝐴 ) } ∈ V → ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐸 ) ) |
8 |
6 7
|
mp1i |
⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐸 ) ) |
9 |
|
inss2 |
⊢ ( { ( I ↾ 𝐴 ) } ∩ ( Base ‘ 𝐺 ) ) ⊆ ( Base ‘ 𝐺 ) |
10 |
8 9
|
eqsstrrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) |
11 |
2
|
eqcomi |
⊢ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) = 𝐸 |
12 |
11
|
eleq1i |
⊢ ( ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ↔ 𝐸 ∈ Grp ) |
13 |
12
|
biimpi |
⊢ ( ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp → 𝐸 ∈ Grp ) |
14 |
13
|
adantl |
⊢ ( ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) → 𝐸 ∈ Grp ) |
15 |
10 14
|
anim12ci |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) ) → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |
16 |
15
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ( { ( I ↾ 𝐴 ) } ⊆ ( Base ‘ 𝐺 ) ∧ ( 𝐺 ↾s { ( I ↾ 𝐴 ) } ) ∈ Grp ) → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) ) |
17 |
5 16
|
sylbid |
⊢ ( 𝐴 ∈ 𝑉 → ( { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) ) |
18 |
3 17
|
mpd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐸 ∈ Grp ∧ ( Base ‘ 𝐸 ) ⊆ ( Base ‘ 𝐺 ) ) ) |