Description: The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | idressubgsymg.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
Assertion | idressubgsymg | ⊢ ( 𝐴 ∈ 𝑉 → { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idressubgsymg.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
2 | 1 | symgid | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
3 | 2 | sneqd | ⊢ ( 𝐴 ∈ 𝑉 → { ( I ↾ 𝐴 ) } = { ( 0g ‘ 𝐺 ) } ) |
4 | 1 | symggrp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
6 | 5 | 0subg | ⊢ ( 𝐺 ∈ Grp → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
7 | 4 6 | syl | ⊢ ( 𝐴 ∈ 𝑉 → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
8 | 3 7 | eqeltrd | ⊢ ( 𝐴 ∈ 𝑉 → { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |