Metamath Proof Explorer


Theorem idressubgsymg

Description: The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypothesis idressubgsymg.g 𝐺 = ( SymGrp ‘ 𝐴 )
Assertion idressubgsymg ( 𝐴𝑉 → { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 idressubgsymg.g 𝐺 = ( SymGrp ‘ 𝐴 )
2 1 symgid ( 𝐴𝑉 → ( I ↾ 𝐴 ) = ( 0g𝐺 ) )
3 2 sneqd ( 𝐴𝑉 → { ( I ↾ 𝐴 ) } = { ( 0g𝐺 ) } )
4 1 symggrp ( 𝐴𝑉𝐺 ∈ Grp )
5 eqid ( 0g𝐺 ) = ( 0g𝐺 )
6 5 0subg ( 𝐺 ∈ Grp → { ( 0g𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) )
7 4 6 syl ( 𝐴𝑉 → { ( 0g𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) )
8 3 7 eqeltrd ( 𝐴𝑉 → { ( I ↾ 𝐴 ) } ∈ ( SubGrp ‘ 𝐺 ) )