Step |
Hyp |
Ref |
Expression |
1 |
|
idrhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
3 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
4 |
1
|
idghm |
⊢ ( 𝑅 ∈ Grp → ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑅 ∈ Ring → ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
7 |
6
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
8 |
6 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
8
|
idmhm |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd → ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
10 |
7 9
|
syl |
⊢ ( 𝑅 ∈ Ring → ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
11 |
5 10
|
jca |
⊢ ( 𝑅 ∈ Ring → ( ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ∧ ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) |
12 |
6 6
|
isrhm |
⊢ ( ( I ↾ 𝐵 ) ∈ ( 𝑅 RingHom 𝑅 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ Ring ) ∧ ( ( I ↾ 𝐵 ) ∈ ( 𝑅 GrpHom 𝑅 ) ∧ ( I ↾ 𝐵 ) ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) ) ) |
13 |
2 2 11 12
|
syl21anbrc |
⊢ ( 𝑅 ∈ Ring → ( I ↾ 𝐵 ) ∈ ( 𝑅 RingHom 𝑅 ) ) |