Metamath Proof Explorer


Theorem ids1

Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion ids1 ⟨“ 𝐴 ”⟩ = ⟨“ ( I ‘ 𝐴 ) ”⟩

Proof

Step Hyp Ref Expression
1 fvex ( I ‘ 𝐴 ) ∈ V
2 fvi ( ( I ‘ 𝐴 ) ∈ V → ( I ‘ ( I ‘ 𝐴 ) ) = ( I ‘ 𝐴 ) )
3 1 2 ax-mp ( I ‘ ( I ‘ 𝐴 ) ) = ( I ‘ 𝐴 )
4 3 opeq2i ⟨ 0 , ( I ‘ ( I ‘ 𝐴 ) ) ⟩ = ⟨ 0 , ( I ‘ 𝐴 ) ⟩
5 4 sneqi { ⟨ 0 , ( I ‘ ( I ‘ 𝐴 ) ) ⟩ } = { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
6 df-s1 ⟨“ ( I ‘ 𝐴 ) ”⟩ = { ⟨ 0 , ( I ‘ ( I ‘ 𝐴 ) ) ⟩ }
7 df-s1 ⟨“ 𝐴 ”⟩ = { ⟨ 0 , ( I ‘ 𝐴 ) ⟩ }
8 5 6 7 3eqtr4ri ⟨“ 𝐴 ”⟩ = ⟨“ ( I ‘ 𝐴 ) ”⟩