Step |
Hyp |
Ref |
Expression |
1 |
|
idsrngd.k |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
idsrngd.c |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
3 |
|
idsrngd.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
4 |
|
idsrngd.i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∗ ‘ 𝑥 ) = 𝑥 ) |
5 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) ) |
8 |
2
|
a1i |
⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝑅 ) ) |
9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
11 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 = 𝑎 ) → 𝑥 = 𝑎 ) |
15 |
14
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 = 𝑎 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑎 ) ) |
16 |
15 14
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑥 = 𝑎 ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ 𝑎 ) = 𝑎 ) ) |
17 |
13 16
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ 𝑎 ) = 𝑎 ) ) |
18 |
12 17
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ 𝑎 ) = 𝑎 ) |
19 |
18 13
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ 𝑎 ) ∈ 𝐵 ) |
20 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
21 |
20
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 ) |
22 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
23 |
10 22
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
25 |
1 24
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
26 |
23 25
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) → 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
29 |
28 27
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
30 |
26 29
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) |
31 |
21 30
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
32 |
18
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ 𝑎 ) = 𝑎 ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = 𝑏 ) → 𝑥 = 𝑏 ) |
35 |
34
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = 𝑏 ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝑏 ) ) |
36 |
35 34
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = 𝑏 ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ 𝑏 ) = 𝑏 ) ) |
37 |
33 36
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ 𝑏 ) = 𝑏 ) ) |
38 |
20 37
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ 𝑏 ) = 𝑏 ) |
39 |
38
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ 𝑏 ) = 𝑏 ) |
40 |
32 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ∗ ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ∗ ‘ 𝑏 ) ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
41 |
31 40
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ∗ ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ∗ ‘ 𝑏 ) ) ) |
42 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
43 |
1 42
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) |
44 |
3 43
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) |
45 |
1 42
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
46 |
10 45
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) → 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
48 |
47
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) |
49 |
48 47
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) → ( ( ∗ ‘ 𝑥 ) = 𝑥 ↔ ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) |
50 |
46 49
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ∗ ‘ 𝑥 ) = 𝑥 → ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) |
51 |
21 50
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
52 |
39 32
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ∗ ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ∗ ‘ 𝑎 ) ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) |
53 |
44 51 52
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) = ( ( ∗ ‘ 𝑏 ) ( .r ‘ 𝑅 ) ( ∗ ‘ 𝑎 ) ) ) |
54 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) = ( ∗ ‘ 𝑎 ) ) |
55 |
54 18
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝑎 ) ) = 𝑎 ) |
56 |
5 6 7 8 10 19 41 53 55
|
issrngd |
⊢ ( 𝜑 → 𝑅 ∈ *-Ring ) |