| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idsrngd.k | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | idsrngd.c | ⊢  ∗   =  ( *𝑟 ‘ 𝑅 ) | 
						
							| 3 |  | idsrngd.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 4 |  | idsrngd.i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  (  ∗  ‘ 𝑥 )  =  𝑥 ) | 
						
							| 5 | 1 | a1i | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 8 | 2 | a1i | ⊢ ( 𝜑  →   ∗   =  ( *𝑟 ‘ 𝑅 ) ) | 
						
							| 9 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 11 | 4 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  𝑎  ∈  𝐵 ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑥  =  𝑎 )  →  𝑥  =  𝑎 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑥  =  𝑎 )  →  (  ∗  ‘ 𝑥 )  =  (  ∗  ‘ 𝑎 ) ) | 
						
							| 16 | 15 14 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑥  =  𝑎 )  →  ( (  ∗  ‘ 𝑥 )  =  𝑥  ↔  (  ∗  ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 17 | 13 16 | rspcdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥  →  (  ∗  ‘ 𝑎 )  =  𝑎 ) ) | 
						
							| 18 | 12 17 | mpd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  (  ∗  ‘ 𝑎 )  =  𝑎 ) | 
						
							| 19 | 18 13 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  (  ∗  ‘ 𝑎 )  ∈  𝐵 ) | 
						
							| 20 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥 ) | 
						
							| 21 | 20 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥 ) | 
						
							| 22 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 23 | 10 22 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 24 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 25 | 1 24 | grpcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 26 | 23 25 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  →  𝑥  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  →  (  ∗  ‘ 𝑥 )  =  (  ∗  ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) | 
						
							| 29 | 28 27 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  →  ( (  ∗  ‘ 𝑥 )  =  𝑥  ↔  (  ∗  ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) | 
						
							| 30 | 26 29 | rspcdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥  →  (  ∗  ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) ) | 
						
							| 31 | 21 30 | mpd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  (  ∗  ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 32 | 18 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  (  ∗  ‘ 𝑎 )  =  𝑎 ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  𝑏 )  →  𝑥  =  𝑏 ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  𝑏 )  →  (  ∗  ‘ 𝑥 )  =  (  ∗  ‘ 𝑏 ) ) | 
						
							| 36 | 35 34 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  𝑏 )  →  ( (  ∗  ‘ 𝑥 )  =  𝑥  ↔  (  ∗  ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 37 | 33 36 | rspcdv | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥  →  (  ∗  ‘ 𝑏 )  =  𝑏 ) ) | 
						
							| 38 | 20 37 | mpd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  (  ∗  ‘ 𝑏 )  =  𝑏 ) | 
						
							| 39 | 38 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  (  ∗  ‘ 𝑏 )  =  𝑏 ) | 
						
							| 40 | 32 39 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( (  ∗  ‘ 𝑎 ) ( +g ‘ 𝑅 ) (  ∗  ‘ 𝑏 ) )  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 41 | 31 40 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  (  ∗  ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( (  ∗  ‘ 𝑎 ) ( +g ‘ 𝑅 ) (  ∗  ‘ 𝑏 ) ) ) | 
						
							| 42 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 43 | 1 42 | crngcom | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  =  ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) | 
						
							| 44 | 3 43 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  =  ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) | 
						
							| 45 | 1 42 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 46 | 10 45 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  →  𝑥  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  →  (  ∗  ‘ 𝑥 )  =  (  ∗  ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) | 
						
							| 49 | 48 47 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  𝑥  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  →  ( (  ∗  ‘ 𝑥 )  =  𝑥  ↔  (  ∗  ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) | 
						
							| 50 | 46 49 | rspcdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 (  ∗  ‘ 𝑥 )  =  𝑥  →  (  ∗  ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) | 
						
							| 51 | 21 50 | mpd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  (  ∗  ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 52 | 39 32 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( (  ∗  ‘ 𝑏 ) ( .r ‘ 𝑅 ) (  ∗  ‘ 𝑎 ) )  =  ( 𝑏 ( .r ‘ 𝑅 ) 𝑎 ) ) | 
						
							| 53 | 44 51 52 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  (  ∗  ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( (  ∗  ‘ 𝑏 ) ( .r ‘ 𝑅 ) (  ∗  ‘ 𝑎 ) ) ) | 
						
							| 54 | 18 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  (  ∗  ‘ (  ∗  ‘ 𝑎 ) )  =  (  ∗  ‘ 𝑎 ) ) | 
						
							| 55 | 54 18 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  (  ∗  ‘ (  ∗  ‘ 𝑎 ) )  =  𝑎 ) | 
						
							| 56 | 5 6 7 8 10 19 41 53 55 | issrngd | ⊢ ( 𝜑  →  𝑅  ∈  *-Ring ) |