Metamath Proof Explorer


Theorem idssen

Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion idssen I ⊆ ≈

Proof

Step Hyp Ref Expression
1 reli Rel I
2 vex 𝑦 ∈ V
3 2 ideq ( 𝑥 I 𝑦𝑥 = 𝑦 )
4 eqeng ( 𝑥 ∈ V → ( 𝑥 = 𝑦𝑥𝑦 ) )
5 4 elv ( 𝑥 = 𝑦𝑥𝑦 )
6 3 5 sylbi ( 𝑥 I 𝑦𝑥𝑦 )
7 df-br ( 𝑥 I 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ I )
8 df-br ( 𝑥𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ≈ )
9 6 7 8 3imtr3i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ I → ⟨ 𝑥 , 𝑦 ⟩ ∈ ≈ )
10 1 9 relssi I ⊆ ≈