Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | idssen | ⊢ I ⊆ ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli | ⊢ Rel I | |
2 | vex | ⊢ 𝑦 ∈ V | |
3 | 2 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
4 | eqeng | ⊢ ( 𝑥 ∈ V → ( 𝑥 = 𝑦 → 𝑥 ≈ 𝑦 ) ) | |
5 | 4 | elv | ⊢ ( 𝑥 = 𝑦 → 𝑥 ≈ 𝑦 ) |
6 | 3 5 | sylbi | ⊢ ( 𝑥 I 𝑦 → 𝑥 ≈ 𝑦 ) |
7 | df-br | ⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) | |
8 | df-br | ⊢ ( 𝑥 ≈ 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ≈ ) | |
9 | 6 7 8 | 3imtr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑦 〉 ∈ ≈ ) |
10 | 1 9 | relssi | ⊢ I ⊆ ≈ |