Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 |
2 |
|
f1of |
⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) |
3 |
1 2
|
mp1i |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) |
4 |
|
simpr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ∈ 𝑈 ) |
5 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) = 𝑥 ) |
6 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) |
7 |
5 6
|
breqan12d |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ↔ 𝑥 𝑠 𝑦 ) ) |
8 |
7
|
biimprd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
10 |
9
|
ralrimivva |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
11 |
|
breq |
⊢ ( 𝑟 = 𝑠 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑠 𝑦 ) ) |
12 |
11
|
imbi1d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
13 |
12
|
2ralbidv |
⊢ ( 𝑟 = 𝑠 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
14 |
13
|
rspcev |
⊢ ( ( 𝑠 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
15 |
4 10 14
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
16 |
15
|
ralrimiva |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝑈 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
17 |
|
isucn |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ↔ ( ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ∧ ∀ 𝑠 ∈ 𝑈 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) ) |
18 |
17
|
anidms |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ↔ ( ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ∧ ∀ 𝑠 ∈ 𝑈 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) ) |
19 |
3 16 18
|
mpbir2and |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ) |