Metamath Proof Explorer


Theorem iducn

Description: The identity is uniformly continuous from a uniform structure to itself. Example 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion iducn ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) )

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ 𝑋 ) : 𝑋1-1-onto𝑋
2 f1of ( ( I ↾ 𝑋 ) : 𝑋1-1-onto𝑋 → ( I ↾ 𝑋 ) : 𝑋𝑋 )
3 1 2 mp1i ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) : 𝑋𝑋 )
4 simpr ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠𝑈 ) → 𝑠𝑈 )
5 fvresi ( 𝑥𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) = 𝑥 )
6 fvresi ( 𝑦𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑦 ) = 𝑦 )
7 5 6 breqan12d ( ( 𝑥𝑋𝑦𝑋 ) → ( ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ↔ 𝑥 𝑠 𝑦 ) )
8 7 biimprd ( ( 𝑥𝑋𝑦𝑋 ) → ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) )
9 8 adantl ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠𝑈 ) ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) )
10 9 ralrimivva ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠𝑈 ) → ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) )
11 breq ( 𝑟 = 𝑠 → ( 𝑥 𝑟 𝑦𝑥 𝑠 𝑦 ) )
12 11 imbi1d ( 𝑟 = 𝑠 → ( ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) )
13 12 2ralbidv ( 𝑟 = 𝑠 → ( ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) )
14 13 rspcev ( ( 𝑠𝑈 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) → ∃ 𝑟𝑈𝑥𝑋𝑦𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) )
15 4 10 14 syl2anc ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠𝑈 ) → ∃ 𝑟𝑈𝑥𝑋𝑦𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) )
16 15 ralrimiva ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) )
17 isucn ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ↔ ( ( I ↾ 𝑋 ) : 𝑋𝑋 ∧ ∀ 𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) )
18 17 anidms ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ↔ ( ( I ↾ 𝑋 ) : 𝑋𝑋 ∧ ∀ 𝑠𝑈𝑟𝑈𝑥𝑋𝑦𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) )
19 3 16 18 mpbir2and ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) )