Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
⊢ ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ |
2 |
|
f1ofo |
⊢ ( ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ → ( I ↾ ℋ ) : ℋ –onto→ ℋ ) |
3 |
1 2
|
ax-mp |
⊢ ( I ↾ ℋ ) : ℋ –onto→ ℋ |
4 |
|
fvresi |
⊢ ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 ) |
5 |
|
fvresi |
⊢ ( 𝑦 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑦 ) = 𝑦 ) |
6 |
4 5
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
7 |
6
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
8 |
|
elunop |
⊢ ( ( I ↾ ℋ ) ∈ UniOp ↔ ( ( I ↾ ℋ ) : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
9 |
3 7 8
|
mpbir2an |
⊢ ( I ↾ ℋ ) ∈ UniOp |