Metamath Proof Explorer


Theorem idunop

Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion idunop ( I ↾ ℋ ) ∈ UniOp

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ
2 f1ofo ( ( I ↾ ℋ ) : ℋ –1-1-onto→ ℋ → ( I ↾ ℋ ) : ℋ –onto→ ℋ )
3 1 2 ax-mp ( I ↾ ℋ ) : ℋ –onto→ ℋ
4 fvresi ( 𝑥 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑥 ) = 𝑥 )
5 fvresi ( 𝑦 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑦 ) = 𝑦 )
6 4 5 oveqan12d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) )
7 6 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 )
8 elunop ( ( I ↾ ℋ ) ∈ UniOp ↔ ( ( I ↾ ℋ ) : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( I ↾ ℋ ) ‘ 𝑥 ) ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) )
9 3 7 8 mpbir2an ( I ↾ ℋ ) ∈ UniOp