Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iedgedg.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
Assertion | iedgedg | ⊢ ( ( Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐼 ) ∈ ( Edg ‘ 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iedgedg.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
2 | fvelrn | ⊢ ( ( Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐼 ) ∈ ran 𝐸 ) | |
3 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
4 | 1 | rneqi | ⊢ ran 𝐸 = ran ( iEdg ‘ 𝐺 ) |
5 | 3 4 | eqtr4i | ⊢ ( Edg ‘ 𝐺 ) = ran 𝐸 |
6 | 2 5 | eleqtrrdi | ⊢ ( ( Fun 𝐸 ∧ 𝐼 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝐼 ) ∈ ( Edg ‘ 𝐺 ) ) |