Metamath Proof Explorer


Theorem iedgedg

Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypothesis iedgedg.e 𝐸 = ( iEdg ‘ 𝐺 )
Assertion iedgedg ( ( Fun 𝐸𝐼 ∈ dom 𝐸 ) → ( 𝐸𝐼 ) ∈ ( Edg ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 iedgedg.e 𝐸 = ( iEdg ‘ 𝐺 )
2 fvelrn ( ( Fun 𝐸𝐼 ∈ dom 𝐸 ) → ( 𝐸𝐼 ) ∈ ran 𝐸 )
3 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
4 1 rneqi ran 𝐸 = ran ( iEdg ‘ 𝐺 )
5 3 4 eqtr4i ( Edg ‘ 𝐺 ) = ran 𝐸
6 2 5 eleqtrrdi ( ( Fun 𝐸𝐼 ∈ dom 𝐸 ) → ( 𝐸𝐼 ) ∈ ( Edg ‘ 𝐺 ) )