Step |
Hyp |
Ref |
Expression |
1 |
|
iedginwlk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
2 |
|
simp1 |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun 𝐼 ) |
3 |
1
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ Word dom 𝐼 ) |
5 |
|
simp3 |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
6 |
|
wrdsymbcl |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) |
8 |
|
fvelrn |
⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ran 𝐼 ) |
9 |
2 7 8
|
syl2anc |
⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ran 𝐼 ) |