Metamath Proof Explorer


Theorem iedginwlk

Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021)

Ref Expression
Hypothesis iedginwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
Assertion iedginwlk ( ( Fun 𝐼𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 iedginwlk.i 𝐼 = ( iEdg ‘ 𝐺 )
2 simp1 ( ( Fun 𝐼𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun 𝐼 )
3 1 wlkf ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃𝐹 ∈ Word dom 𝐼 )
4 3 3ad2ant2 ( ( Fun 𝐼𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ Word dom 𝐼 )
5 simp3 ( ( Fun 𝐼𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
6 wrdsymbcl ( ( 𝐹 ∈ Word dom 𝐼𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹𝑋 ) ∈ dom 𝐼 )
7 4 5 6 syl2anc ( ( Fun 𝐼𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹𝑋 ) ∈ dom 𝐼 )
8 fvelrn ( ( Fun 𝐼 ∧ ( 𝐹𝑋 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ran 𝐼 )
9 2 7 8 syl2anc ( ( Fun 𝐼𝐹 ( Walks ‘ 𝐺 ) 𝑃𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹𝑋 ) ) ∈ ran 𝐼 )