Step |
Hyp |
Ref |
Expression |
1 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
2 |
|
ibar |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
3 |
2
|
ifbid |
⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) ) |
4 |
1 3
|
eqtr2d |
⊢ ( 𝜑 → if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) ) |
5 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
6 |
5
|
con3i |
⊢ ( ¬ 𝜑 → ¬ ( 𝜑 ∧ 𝜓 ) ) |
7 |
6
|
iffalsed |
⊢ ( ¬ 𝜑 → if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = 𝐵 ) |
8 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) = 𝐵 ) |
9 |
7 8
|
eqtr4d |
⊢ ( ¬ 𝜑 → if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) ) |
10 |
4 9
|
pm2.61i |
⊢ if ( ( 𝜑 ∧ 𝜓 ) , 𝐴 , 𝐵 ) = if ( 𝜑 , if ( 𝜓 , 𝐴 , 𝐵 ) , 𝐵 ) |