Step |
Hyp |
Ref |
Expression |
1 |
|
dfbi3 |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) |
2 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
3 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 ) |
4 |
3
|
eqcomd |
⊢ ( 𝜓 → 𝐴 = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
5 |
2 4
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
6 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
7 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 ) |
8 |
7
|
eqcomd |
⊢ ( ¬ 𝜓 → 𝐵 = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
9 |
6 8
|
sylan9eq |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
10 |
5 9
|
jaoi |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
11 |
1 10
|
sylbi |
⊢ ( ( 𝜑 ↔ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |