Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ifbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | ifbid | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
2 | ifbi | ⊢ ( ( 𝜓 ↔ 𝜒 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) ) |