Metamath Proof Explorer


Theorem ifbid

Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005)

Ref Expression
Hypothesis ifbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ifbid ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ifbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ifbi ( ( 𝜓𝜒 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) )
3 1 2 syl ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) )