Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ifbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | ifbid | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | ifbi | ⊢ ( ( 𝜓 ↔ 𝜒 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐴 , 𝐵 ) ) |