Description: Equivalence deduction for conditional operators. (Contributed by Thierry Arnoux, 14-Feb-2017) (Proof shortened by Wolf Lammen, 24-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifbieq12d2.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| ifbieq12d2.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐶 ) | ||
| ifbieq12d2.3 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐷 ) | ||
| Assertion | ifbieq12d2 | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐶 , 𝐷 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifbieq12d2.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | ifbieq12d2.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐶 ) | |
| 3 | ifbieq12d2.3 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐷 ) | |
| 4 | 2 3 | ifeq12da | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) | 
| 5 | 1 | ifbid | ⊢ ( 𝜑 → if ( 𝜓 , 𝐶 , 𝐷 ) = if ( 𝜒 , 𝐶 , 𝐷 ) ) | 
| 6 | 4 5 | eqtrd | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜒 , 𝐶 , 𝐷 ) ) |