Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifbieq12i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| ifbieq12i.2 | ⊢ 𝐴 = 𝐶 | ||
| ifbieq12i.3 | ⊢ 𝐵 = 𝐷 | ||
| Assertion | ifbieq12i | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq12i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | ifbieq12i.2 | ⊢ 𝐴 = 𝐶 | |
| 3 | ifbieq12i.3 | ⊢ 𝐵 = 𝐷 | |
| 4 | ifeq1 | ⊢ ( 𝐴 = 𝐶 → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜑 , 𝐶 , 𝐵 ) ) | |
| 5 | 2 4 | ax-mp | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜑 , 𝐶 , 𝐵 ) |
| 6 | 1 3 | ifbieq2i | ⊢ if ( 𝜑 , 𝐶 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) |
| 7 | 5 6 | eqtri | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) |