Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifbieq2d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| ifbieq2d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| Assertion | ifbieq2d | ⊢ ( 𝜑 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜒 , 𝐶 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | ifbieq2d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | 1 | ifbid | ⊢ ( 𝜑 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜒 , 𝐶 , 𝐴 ) ) |
| 4 | 2 | ifeq2d | ⊢ ( 𝜑 → if ( 𝜒 , 𝐶 , 𝐴 ) = if ( 𝜒 , 𝐶 , 𝐵 ) ) |
| 5 | 3 4 | eqtrd | ⊢ ( 𝜑 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜒 , 𝐶 , 𝐵 ) ) |