Metamath Proof Explorer


Theorem ifbieq2i

Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses ifbieq2i.1 ( 𝜑𝜓 )
ifbieq2i.2 𝐴 = 𝐵
Assertion ifbieq2i if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 )

Proof

Step Hyp Ref Expression
1 ifbieq2i.1 ( 𝜑𝜓 )
2 ifbieq2i.2 𝐴 = 𝐵
3 ifbi ( ( 𝜑𝜓 ) → if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐴 ) )
4 1 3 ax-mp if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐴 )
5 ifeq2 ( 𝐴 = 𝐵 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) )
6 2 5 ax-mp if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 )
7 4 6 eqtri if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 )