Step |
Hyp |
Ref |
Expression |
1 |
|
ifboth.1 |
⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜓 ↔ 𝜃 ) ) |
2 |
|
ifboth.2 |
⊢ ( 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
ifbothda.3 |
⊢ ( ( 𝜂 ∧ 𝜑 ) → 𝜓 ) |
4 |
|
ifbothda.4 |
⊢ ( ( 𝜂 ∧ ¬ 𝜑 ) → 𝜒 ) |
5 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
6 |
5
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) ) |
7 |
6 1
|
syl |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜂 ∧ 𝜑 ) → ( 𝜓 ↔ 𝜃 ) ) |
9 |
3 8
|
mpbid |
⊢ ( ( 𝜂 ∧ 𝜑 ) → 𝜃 ) |
10 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
11 |
10
|
eqcomd |
⊢ ( ¬ 𝜑 → 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) ) |
12 |
11 2
|
syl |
⊢ ( ¬ 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜂 ∧ ¬ 𝜑 ) → ( 𝜒 ↔ 𝜃 ) ) |
14 |
4 13
|
mpbid |
⊢ ( ( 𝜂 ∧ ¬ 𝜑 ) → 𝜃 ) |
15 |
9 14
|
pm2.61dan |
⊢ ( 𝜂 → 𝜃 ) |