Description: Membership (closure) of a conditional operator. (Contributed by NM, 4-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | ifcl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝐴 ∈ 𝐶 ↔ if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ) ) | |
2 | eleq1 | ⊢ ( 𝐵 = if ( 𝜑 , 𝐴 , 𝐵 ) → ( 𝐵 ∈ 𝐶 ↔ if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ) ) | |
3 | 1 2 | ifboth | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |