Description: Membership (closure) of a conditional operator, deduction form. (Contributed by SO, 16-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifcld.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
ifcld.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | ||
Assertion | ifcld | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifcld.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
2 | ifcld.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
3 | ifcl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → if ( 𝜓 , 𝐴 , 𝐵 ) ∈ 𝐶 ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |