Metamath Proof Explorer


Theorem ifel

Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005)

Ref Expression
Assertion ifel ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ↔ ( ( 𝜑𝐴𝐶 ) ∨ ( ¬ 𝜑𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶𝐴𝐶 ) )
2 eleq1 ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶𝐵𝐶 ) )
3 1 2 elimif ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ↔ ( ( 𝜑𝐴𝐶 ) ∨ ( ¬ 𝜑𝐵𝐶 ) ) )