Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | ifel | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝐶 ) ∨ ( ¬ 𝜑 ∧ 𝐵 ∈ 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
2 | eleq1 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
3 | 1 2 | elimif | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) ∈ 𝐶 ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝐶 ) ∨ ( ¬ 𝜑 ∧ 𝐵 ∈ 𝐶 ) ) ) |