Metamath Proof Explorer


Theorem ifeq1

Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion ifeq1 ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐶 ) )

Proof

Step Hyp Ref Expression
1 rabeq ( 𝐴 = 𝐵 → { 𝑥𝐴𝜑 } = { 𝑥𝐵𝜑 } )
2 1 uneq1d ( 𝐴 = 𝐵 → ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐶 ∣ ¬ 𝜑 } ) = ( { 𝑥𝐵𝜑 } ∪ { 𝑥𝐶 ∣ ¬ 𝜑 } ) )
3 dfif6 if ( 𝜑 , 𝐴 , 𝐶 ) = ( { 𝑥𝐴𝜑 } ∪ { 𝑥𝐶 ∣ ¬ 𝜑 } )
4 dfif6 if ( 𝜑 , 𝐵 , 𝐶 ) = ( { 𝑥𝐵𝜑 } ∪ { 𝑥𝐶 ∣ ¬ 𝜑 } )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐶 ) )