Metamath Proof Explorer


Theorem ifeq12

Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004)

Ref Expression
Assertion ifeq12 ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) )

Proof

Step Hyp Ref Expression
1 ifeq1 ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐶 ) )
2 ifeq2 ( 𝐶 = 𝐷 → if ( 𝜑 , 𝐵 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) )
3 1 2 sylan9eq ( ( 𝐴 = 𝐵𝐶 = 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) )