Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ifeq12 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1 | ⊢ ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐶 ) ) | |
2 | ifeq2 | ⊢ ( 𝐶 = 𝐷 → if ( 𝜑 , 𝐵 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) ) | |
3 | 1 2 | sylan9eq | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐶 = 𝐷 ) → if ( 𝜑 , 𝐴 , 𝐶 ) = if ( 𝜑 , 𝐵 , 𝐷 ) ) |