Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
ifeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
Assertion | ifeq12d | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | ifeq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
3 | 1 | ifeq1d | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) ) |
4 | 2 | ifeq2d | ⊢ ( 𝜑 → if ( 𝜓 , 𝐵 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐷 ) ) |
5 | 3 4 | eqtrd | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐷 ) ) |