Step |
Hyp |
Ref |
Expression |
1 |
|
ifeq12da.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐶 ) |
2 |
|
ifeq12da.2 |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐷 ) |
3 |
1
|
ifeq1da |
⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) |
4 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐵 ) = 𝐶 ) |
5 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐷 ) = 𝐶 ) |
6 |
4 5
|
eqtr4d |
⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
7 |
3 6
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
8 |
2
|
ifeq2da |
⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐷 ) ) |
9 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐷 ) = 𝐷 ) |
10 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐶 , 𝐷 ) = 𝐷 ) |
11 |
9 10
|
eqtr4d |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐷 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
12 |
8 11
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |
13 |
7 12
|
pm2.61dan |
⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐶 , 𝐷 ) ) |