| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ifeq12da.1 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐴  =  𝐶 ) | 
						
							| 2 |  | ifeq12da.2 | ⊢ ( ( 𝜑  ∧  ¬  𝜓 )  →  𝐵  =  𝐷 ) | 
						
							| 3 | 1 | ifeq1da | ⊢ ( 𝜑  →  if ( 𝜓 ,  𝐴 ,  𝐵 )  =  if ( 𝜓 ,  𝐶 ,  𝐵 ) ) | 
						
							| 4 |  | iftrue | ⊢ ( 𝜓  →  if ( 𝜓 ,  𝐶 ,  𝐵 )  =  𝐶 ) | 
						
							| 5 |  | iftrue | ⊢ ( 𝜓  →  if ( 𝜓 ,  𝐶 ,  𝐷 )  =  𝐶 ) | 
						
							| 6 | 4 5 | eqtr4d | ⊢ ( 𝜓  →  if ( 𝜓 ,  𝐶 ,  𝐵 )  =  if ( 𝜓 ,  𝐶 ,  𝐷 ) ) | 
						
							| 7 | 3 6 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝜓 )  →  if ( 𝜓 ,  𝐴 ,  𝐵 )  =  if ( 𝜓 ,  𝐶 ,  𝐷 ) ) | 
						
							| 8 | 2 | ifeq2da | ⊢ ( 𝜑  →  if ( 𝜓 ,  𝐴 ,  𝐵 )  =  if ( 𝜓 ,  𝐴 ,  𝐷 ) ) | 
						
							| 9 |  | iffalse | ⊢ ( ¬  𝜓  →  if ( 𝜓 ,  𝐴 ,  𝐷 )  =  𝐷 ) | 
						
							| 10 |  | iffalse | ⊢ ( ¬  𝜓  →  if ( 𝜓 ,  𝐶 ,  𝐷 )  =  𝐷 ) | 
						
							| 11 | 9 10 | eqtr4d | ⊢ ( ¬  𝜓  →  if ( 𝜓 ,  𝐴 ,  𝐷 )  =  if ( 𝜓 ,  𝐶 ,  𝐷 ) ) | 
						
							| 12 | 8 11 | sylan9eq | ⊢ ( ( 𝜑  ∧  ¬  𝜓 )  →  if ( 𝜓 ,  𝐴 ,  𝐵 )  =  if ( 𝜓 ,  𝐶 ,  𝐷 ) ) | 
						
							| 13 | 7 12 | pm2.61dan | ⊢ ( 𝜑  →  if ( 𝜓 ,  𝐴 ,  𝐵 )  =  if ( 𝜓 ,  𝐶 ,  𝐷 ) ) |