Metamath Proof Explorer


Theorem ifeq1d

Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005)

Ref Expression
Hypothesis ifeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion ifeq1d ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ifeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 ifeq1 ( 𝐴 = 𝐵 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )
3 1 2 syl ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )