Metamath Proof Explorer


Theorem ifeq1da

Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis ifeq1da.1 ( ( 𝜑𝜓 ) → 𝐴 = 𝐵 )
Assertion ifeq1da ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ifeq1da.1 ( ( 𝜑𝜓 ) → 𝐴 = 𝐵 )
2 1 ifeq1d ( ( 𝜑𝜓 ) → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )
3 iffalse ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐶 ) = 𝐶 )
4 iffalse ( ¬ 𝜓 → if ( 𝜓 , 𝐵 , 𝐶 ) = 𝐶 )
5 3 4 eqtr4d ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )
6 5 adantl ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )
7 2 6 pm2.61dan ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) )