Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ifeq1da.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) | |
| Assertion | ifeq1da | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1da.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) | |
| 2 | 1 | ifeq1d | ⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) ) |
| 3 | iffalse | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐶 ) = 𝐶 ) | |
| 4 | iffalse | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐵 , 𝐶 ) = 𝐶 ) | |
| 5 | 3 4 | eqtr4d | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) ) |
| 7 | 2 6 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐶 ) = if ( 𝜓 , 𝐵 , 𝐶 ) ) |