Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | ifeq2 | ⊢ ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜑 , 𝐶 , 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ ¬ 𝜑 } ) | |
2 | 1 | uneq2d | ⊢ ( 𝐴 = 𝐵 → ( { 𝑥 ∈ 𝐶 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = ( { 𝑥 ∈ 𝐶 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ ¬ 𝜑 } ) ) |
3 | dfif6 | ⊢ if ( 𝜑 , 𝐶 , 𝐴 ) = ( { 𝑥 ∈ 𝐶 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) | |
4 | dfif6 | ⊢ if ( 𝜑 , 𝐶 , 𝐵 ) = ( { 𝑥 ∈ 𝐶 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ ¬ 𝜑 } ) | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜑 , 𝐶 , 𝐵 ) ) |