Metamath Proof Explorer


Theorem ifeq2

Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion ifeq2 ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜑 , 𝐶 , 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rabeq ( 𝐴 = 𝐵 → { 𝑥𝐴 ∣ ¬ 𝜑 } = { 𝑥𝐵 ∣ ¬ 𝜑 } )
2 1 uneq2d ( 𝐴 = 𝐵 → ( { 𝑥𝐶𝜑 } ∪ { 𝑥𝐴 ∣ ¬ 𝜑 } ) = ( { 𝑥𝐶𝜑 } ∪ { 𝑥𝐵 ∣ ¬ 𝜑 } ) )
3 dfif6 if ( 𝜑 , 𝐶 , 𝐴 ) = ( { 𝑥𝐶𝜑 } ∪ { 𝑥𝐴 ∣ ¬ 𝜑 } )
4 dfif6 if ( 𝜑 , 𝐶 , 𝐵 ) = ( { 𝑥𝐶𝜑 } ∪ { 𝑥𝐵 ∣ ¬ 𝜑 } )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜑 , 𝐶 , 𝐵 ) )