Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ifeq2da.1 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐴 = 𝐵 ) | |
Assertion | ifeq2da | ⊢ ( 𝜑 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq2da.1 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐴 = 𝐵 ) | |
2 | iftrue | ⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐴 ) = 𝐶 ) | |
3 | iftrue | ⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐵 ) = 𝐶 ) | |
4 | 2 3 | eqtr4d | ⊢ ( 𝜓 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) |
5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) |
6 | 1 | ifeq2d | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) |
7 | 5 6 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) |