Step |
Hyp |
Ref |
Expression |
1 |
|
ifeq3da.1 |
⊢ ( if ( 𝜓 , 𝐸 , 𝐹 ) = 𝐸 → 𝐶 = 𝐺 ) |
2 |
|
ifeq3da.2 |
⊢ ( if ( 𝜓 , 𝐸 , 𝐹 ) = 𝐹 → 𝐶 = 𝐻 ) |
3 |
|
ifeq3da.3 |
⊢ ( 𝜑 → 𝐺 = 𝐴 ) |
4 |
|
ifeq3da.4 |
⊢ ( 𝜑 → 𝐻 = 𝐵 ) |
5 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐸 , 𝐹 ) = 𝐸 ) |
6 |
5 1
|
syl |
⊢ ( 𝜓 → 𝐶 = 𝐺 ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐺 ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 = 𝐴 ) |
9 |
7 8
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐶 ) |
10 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐸 , 𝐹 ) = 𝐹 ) |
11 |
10 2
|
syl |
⊢ ( ¬ 𝜓 → 𝐶 = 𝐻 ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐶 = 𝐻 ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐻 = 𝐵 ) |
14 |
12 13
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐶 ) |
15 |
9 14
|
ifeqda |
⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐶 ) |