Metamath Proof Explorer


Theorem ifeqda

Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018)

Ref Expression
Hypotheses ifeqda.1 ( ( 𝜑𝜓 ) → 𝐴 = 𝐶 )
ifeqda.2 ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐶 )
Assertion ifeqda ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 ifeqda.1 ( ( 𝜑𝜓 ) → 𝐴 = 𝐶 )
2 ifeqda.2 ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 = 𝐶 )
3 iftrue ( 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 )
4 3 adantl ( ( 𝜑𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 )
5 4 1 eqtrd ( ( 𝜑𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐶 )
6 iffalse ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 )
7 6 adantl ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 )
8 7 2 eqtrd ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐶 )
9 5 8 pm2.61dan ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐶 )