Step |
Hyp |
Ref |
Expression |
1 |
|
ifeqeqx.1 |
⊢ ( 𝑥 = 𝑋 → 𝐴 = 𝐶 ) |
2 |
|
ifeqeqx.2 |
⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝑎 ) |
3 |
|
ifeqeqx.3 |
⊢ ( 𝑥 = 𝑋 → ( 𝜒 ↔ 𝜃 ) ) |
4 |
|
ifeqeqx.4 |
⊢ ( 𝑥 = 𝑌 → ( 𝜒 ↔ 𝜓 ) ) |
5 |
|
ifeqeqx.5 |
⊢ ( 𝜑 → 𝑎 = 𝐶 ) |
6 |
|
ifeqeqx.6 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
7 |
|
ifeqeqx.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
|
ifeqeqx.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
9 |
|
eqeq2 |
⊢ ( 𝐴 = if ( 𝜒 , 𝐴 , 𝐵 ) → ( 𝑎 = 𝐴 ↔ 𝑎 = if ( 𝜒 , 𝐴 , 𝐵 ) ) ) |
10 |
|
eqeq2 |
⊢ ( 𝐵 = if ( 𝜒 , 𝐴 , 𝐵 ) → ( 𝑎 = 𝐵 ↔ 𝑎 = if ( 𝜒 , 𝐴 , 𝐵 ) ) ) |
11 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) |
12 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝜑 ) |
13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝜒 ) |
14 |
|
sbceq1a |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝜒 ↔ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
15 |
14
|
biimpd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝜒 → [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
16 |
11 13 15
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) |
17 |
|
dfsbcq |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( [ 𝑋 / 𝑥 ] 𝜒 ↔ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
18 |
|
csbeq1 |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ↔ ( [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) ) |
21 |
|
dfsbcq |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( [ 𝑌 / 𝑥 ] 𝜒 ↔ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
22 |
|
csbeq1 |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
24 |
21 23
|
imbi12d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ↔ ( [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) ) |
25 |
|
nfcvd |
⊢ ( 𝑋 ∈ 𝑊 → Ⅎ 𝑥 𝐶 ) |
26 |
25 1
|
csbiegf |
⊢ ( 𝑋 ∈ 𝑊 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
27 |
8 26
|
syl |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
28 |
27 5
|
eqtr4d |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝑎 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 = 𝑎 ) |
30 |
29
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
31 |
30
|
a1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
32 |
|
pm3.24 |
⊢ ¬ ( 𝜓 ∧ ¬ 𝜓 ) |
33 |
4
|
sbcieg |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑥 ] 𝜒 ↔ 𝜓 ) ) |
34 |
7 33
|
syl |
⊢ ( 𝜑 → ( [ 𝑌 / 𝑥 ] 𝜒 ↔ 𝜓 ) ) |
35 |
34
|
anbi1d |
⊢ ( 𝜑 → ( ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) ↔ ( 𝜓 ∧ ¬ 𝜓 ) ) ) |
36 |
32 35
|
mtbiri |
⊢ ( 𝜑 → ¬ ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) ) |
37 |
36
|
pm2.21d |
⊢ ( 𝜑 → ( ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
38 |
37
|
imp |
⊢ ( ( 𝜑 ∧ ( [ 𝑌 / 𝑥 ] 𝜒 ∧ ¬ 𝜓 ) ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
39 |
38
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ [ 𝑌 / 𝑥 ] 𝜒 ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
40 |
39
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
41 |
20 24 31 40
|
ifbothda |
⊢ ( 𝜑 → ( [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
42 |
12 16 41
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
43 |
|
csbeq1a |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → 𝐴 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) |
44 |
43
|
eqeq2d |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = 𝐴 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 ) ) |
45 |
44
|
biimprd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐴 → 𝑎 = 𝐴 ) ) |
46 |
11 42 45
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ 𝜒 ) → 𝑎 = 𝐴 ) |
47 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) |
48 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝜑 ) |
49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → ¬ 𝜒 ) |
50 |
14
|
notbid |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ 𝜒 ↔ ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
51 |
50
|
biimpd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ 𝜒 → ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
52 |
47 49 51
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) |
53 |
17
|
notbid |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 ↔ ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
54 |
|
csbeq1 |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
55 |
54
|
eqeq2d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
56 |
53 55
|
imbi12d |
⊢ ( 𝑋 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ↔ ( ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) ) |
57 |
21
|
notbid |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ¬ [ 𝑌 / 𝑥 ] 𝜒 ↔ ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 ) ) |
58 |
|
csbeq1 |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
59 |
58
|
eqeq2d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
60 |
57 59
|
imbi12d |
⊢ ( 𝑌 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( ( ¬ [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ↔ ( ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) ) |
61 |
3
|
sbcieg |
⊢ ( 𝑋 ∈ 𝑊 → ( [ 𝑋 / 𝑥 ] 𝜒 ↔ 𝜃 ) ) |
62 |
8 61
|
syl |
⊢ ( 𝜑 → ( [ 𝑋 / 𝑥 ] 𝜒 ↔ 𝜃 ) ) |
63 |
62
|
notbid |
⊢ ( 𝜑 → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 ↔ ¬ 𝜃 ) ) |
64 |
63
|
biimpd |
⊢ ( 𝜑 → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → ¬ 𝜃 ) ) |
65 |
6
|
ex |
⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
66 |
64 65
|
nsyld |
⊢ ( 𝜑 → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → ¬ 𝜓 ) ) |
67 |
66
|
anim2d |
⊢ ( 𝜑 → ( ( 𝜓 ∧ ¬ [ 𝑋 / 𝑥 ] 𝜒 ) → ( 𝜓 ∧ ¬ 𝜓 ) ) ) |
68 |
32 67
|
mtoi |
⊢ ( 𝜑 → ¬ ( 𝜓 ∧ ¬ [ 𝑋 / 𝑥 ] 𝜒 ) ) |
69 |
68
|
pm2.21d |
⊢ ( 𝜑 → ( ( 𝜓 ∧ ¬ [ 𝑋 / 𝑥 ] 𝜒 ) → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
70 |
69
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ¬ [ 𝑋 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
71 |
|
nfcvd |
⊢ ( 𝑌 ∈ 𝑉 → Ⅎ 𝑥 𝑎 ) |
72 |
71 2
|
csbiegf |
⊢ ( 𝑌 ∈ 𝑉 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = 𝑎 ) |
73 |
7 72
|
syl |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = 𝑎 ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = 𝑎 ) |
75 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
76 |
75
|
a1d |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( ¬ [ 𝑌 / 𝑥 ] 𝜒 → 𝑎 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
77 |
56 60 70 76
|
ifbothda |
⊢ ( 𝜑 → ( ¬ [ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ] 𝜒 → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
78 |
48 52 77
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
79 |
|
csbeq1a |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → 𝐵 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
80 |
79
|
eqeq2d |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = 𝐵 ↔ 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
81 |
80
|
biimprd |
⊢ ( 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) → ( 𝑎 = ⦋ if ( 𝜓 , 𝑋 , 𝑌 ) / 𝑥 ⦌ 𝐵 → 𝑎 = 𝐵 ) ) |
82 |
47 78 81
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) ∧ ¬ 𝜒 ) → 𝑎 = 𝐵 ) |
83 |
9 10 46 82
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑥 = if ( 𝜓 , 𝑋 , 𝑌 ) ) → 𝑎 = if ( 𝜒 , 𝐴 , 𝐵 ) ) |