Metamath Proof Explorer


Theorem ifeqor

Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ifeqor ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ∨ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
2 1 con3i ( ¬ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → ¬ 𝜑 )
3 2 iffalsed ( ¬ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )
4 3 orri ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ∨ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )