Metamath Proof Explorer


Theorem ifexg

Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011) (Proof shortened by BJ, 1-Sep-2022)

Ref Expression
Assertion ifexg ( ( 𝐴𝑉𝐵𝑊 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴𝑉 )
2 simpr ( ( 𝐴𝑉𝐵𝑊 ) → 𝐵𝑊 )
3 1 2 ifexd ( ( 𝐴𝑉𝐵𝑊 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ V )