Description: Existence of the conditional operator (closed form). (Contributed by NM, 21-Mar-2011) (Proof shortened by BJ, 1-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ifexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) | |
2 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) | |
3 | 1 2 | ifexd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ∈ V ) |