Metamath Proof Explorer


Theorem iffalsei

Description: Inference associated with iffalse . (Contributed by BJ, 7-Oct-2018)

Ref Expression
Hypothesis iffalsei.1 ¬ 𝜑
Assertion iffalsei if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵

Proof

Step Hyp Ref Expression
1 iffalsei.1 ¬ 𝜑
2 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )
3 1 2 ax-mp if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵