Metamath Proof Explorer


Theorem ifhvhv0

Description: Prove if ( A e. ~H , A , 0h ) e. ~H . (Contributed by David A. Wheeler, 7-Dec-2018) (New usage is discouraged.)

Ref Expression
Assertion ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0 ∈ ℋ
2 1 elimel if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ