Metamath Proof Explorer


Theorem ifid

Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005)

Ref Expression
Assertion ifid if ( 𝜑 , 𝐴 , 𝐴 ) = 𝐴

Proof

Step Hyp Ref Expression
1 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐴 ) = 𝐴 )
2 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐴 ) = 𝐴 )
3 1 2 pm2.61i if ( 𝜑 , 𝐴 , 𝐴 ) = 𝐴