Step |
Hyp |
Ref |
Expression |
1 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → 𝐴 ∈ ℝ ) |
2 |
1
|
leidd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → 𝐴 ≤ 𝐴 ) |
3 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
4 |
3
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
5 |
|
id |
⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
6 |
5
|
imp |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ 𝜑 ) → 𝜓 ) |
7 |
6
|
adantll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → 𝜓 ) |
8 |
7
|
iftrued |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 ) |
9 |
2 4 8
|
3brtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
10 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
12 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ≤ 𝐴 ) |
13 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ∈ ℝ ) |
14 |
13
|
leidd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ≤ 𝐵 ) |
15 |
|
breq2 |
⊢ ( 𝐴 = if ( 𝜓 , 𝐴 , 𝐵 ) → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) ) |
16 |
|
breq2 |
⊢ ( 𝐵 = if ( 𝜓 , 𝐴 , 𝐵 ) → ( 𝐵 ≤ 𝐵 ↔ 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) ) |
17 |
15 16
|
ifboth |
⊢ ( ( 𝐵 ≤ 𝐴 ∧ 𝐵 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
18 |
12 14 17
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
19 |
11 18
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
20 |
9 19
|
pm2.61dan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |