| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝜑  →  if ( 𝜑 ,  𝐵 ,  𝐶 )  =  𝐵 )  | 
						
						
							| 2 | 
							
								1
							 | 
							mpteq2dv | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝜑 ,  𝐵 ,  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝜑  →  if ( 𝜑 ,  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝜑 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜑 ,  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐵 ,  𝐶 )  =  𝐶 )  | 
						
						
							| 6 | 
							
								5
							 | 
							mpteq2dv | 
							⊢ ( ¬  𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝜑 ,  𝐵 ,  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝜑  →  if ( 𝜑 ,  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtr4d | 
							⊢ ( ¬  𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝜑 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜑 ,  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							pm2.61i | 
							⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝜑 ,  𝐵 ,  𝐶 ) )  =  if ( 𝜑 ,  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  |