Metamath Proof Explorer


Theorem ifnebib

Description: The converse of ifbi holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnebib ( 𝐴𝐵 → ( if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ↔ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 eqif ( if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ↔ ( ( 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ∨ ( ¬ 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ) )
2 ifnetrue ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) → 𝜑 )
3 2 adantrl ( ( 𝐴𝐵 ∧ ( 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ) → 𝜑 )
4 simprl ( ( 𝐴𝐵 ∧ ( 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ) → 𝜓 )
5 3 4 2thd ( ( 𝐴𝐵 ∧ ( 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ) → ( 𝜑𝜓 ) )
6 ifnefals ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) → ¬ 𝜑 )
7 6 adantrl ( ( 𝐴𝐵 ∧ ( ¬ 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ) → ¬ 𝜑 )
8 simprl ( ( 𝐴𝐵 ∧ ( ¬ 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ) → ¬ 𝜓 )
9 7 8 2falsed ( ( 𝐴𝐵 ∧ ( ¬ 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ) → ( 𝜑𝜓 ) )
10 5 9 jaodan ( ( 𝐴𝐵 ∧ ( ( 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ∨ ( ¬ 𝜓 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ) ) → ( 𝜑𝜓 ) )
11 1 10 sylan2b ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) → ( 𝜑𝜓 ) )
12 ifbi ( ( 𝜑𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) )
13 12 adantl ( ( 𝐴𝐵 ∧ ( 𝜑𝜓 ) ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) )
14 11 13 impbida ( 𝐴𝐵 → ( if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ↔ ( 𝜑𝜓 ) ) )