Metamath Proof Explorer


Theorem ifnefals

Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Assertion ifnefals ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) → ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
2 1 adantl ( ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
3 simplr ( ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )
4 simpll ( ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ∧ 𝜑 ) → 𝐴𝐵 )
5 4 necomd ( ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ∧ 𝜑 ) → 𝐵𝐴 )
6 3 5 eqnetrd ( ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≠ 𝐴 )
7 6 neneqd ( ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) ∧ 𝜑 ) → ¬ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
8 2 7 pm2.65da ( ( 𝐴𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) → ¬ 𝜑 )