Step |
Hyp |
Ref |
Expression |
1 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
3 |
|
simplr |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ∧ ¬ 𝜑 ) → 𝐴 ≠ 𝐵 ) |
5 |
3 4
|
eqnetrd |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≠ 𝐵 ) |
6 |
5
|
neneqd |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) ∧ ¬ 𝜑 ) → ¬ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
7 |
2 6
|
condan |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) → 𝜑 ) |