| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue | ⊢ ( ( 𝜑  ∨  𝜓 )  →  if ( ( 𝜑  ∨  𝜓 ) ,  𝐴 ,  𝐵 )  =  𝐴 ) | 
						
							| 2 | 1 | orcs | ⊢ ( 𝜑  →  if ( ( 𝜑  ∨  𝜓 ) ,  𝐴 ,  𝐵 )  =  𝐴 ) | 
						
							| 3 |  | iftrue | ⊢ ( 𝜑  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐴 ,  𝐵 ) )  =  𝐴 ) | 
						
							| 4 | 2 3 | eqtr4d | ⊢ ( 𝜑  →  if ( ( 𝜑  ∨  𝜓 ) ,  𝐴 ,  𝐵 )  =  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐴 ,  𝐵 ) ) ) | 
						
							| 5 |  | iffalse | ⊢ ( ¬  𝜑  →  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐴 ,  𝐵 ) )  =  if ( 𝜓 ,  𝐴 ,  𝐵 ) ) | 
						
							| 6 |  | biorf | ⊢ ( ¬  𝜑  →  ( 𝜓  ↔  ( 𝜑  ∨  𝜓 ) ) ) | 
						
							| 7 | 6 | ifbid | ⊢ ( ¬  𝜑  →  if ( 𝜓 ,  𝐴 ,  𝐵 )  =  if ( ( 𝜑  ∨  𝜓 ) ,  𝐴 ,  𝐵 ) ) | 
						
							| 8 | 5 7 | eqtr2d | ⊢ ( ¬  𝜑  →  if ( ( 𝜑  ∨  𝜓 ) ,  𝐴 ,  𝐵 )  =  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐴 ,  𝐵 ) ) ) | 
						
							| 9 | 4 8 | pm2.61i | ⊢ if ( ( 𝜑  ∨  𝜓 ) ,  𝐴 ,  𝐵 )  =  if ( 𝜑 ,  𝐴 ,  if ( 𝜓 ,  𝐴 ,  𝐵 ) ) |